반응형
Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
Tags
- 최소 신장 트리
- 파이썬
- algorithm
- 트리
- 크루스칼
- LCS
- graph
- 넘파이
- 최단 거리
- 플로이드 위셜
- 강한 연결 요소
- 우선 순위 큐
- python
- Strongly Sonnected Coponent
- tree
- 우선순위 큐
- numpy
- prim
- 그래프
- 최단 경로
- 최장 공통 부분 수열
- 유니온 파인드
- 알고리즘
- Longest Common Subsequence
- 최소 스패닝 트리
- traceback
- 다이나믹 프로그래밍
- minimum spanning tree
- 벨만 포드
- priority queue
Archives
- Today
- Total
codinging
[Library] NumPy - 2 본문
NumPy(Numerical Python)
NumPy는 행렬이나 일반적으로 대규모 다차원 배열을 쉽게 처리할 수 있도록 지원하는 파이썬의 라이브러리이다.
NumPy Tutorials
https://numpy.org/devdocs/user/quickstart.html
예시
배열 출력
차원별 출력
>>> a = np.arange(6) # 1d array
>>> print(a)
[0 1 2 3 4 5]
>>> b = np.arange(12).reshape(4, 3) # 2d array
>>> print(b)
[[ 0 1 2]
[ 3 4 5]
[ 6 7 8]
[ 9 10 11]]
>>> c = np.arange(24).reshape(2, 3, 4) # 3d array
>>> print(c)
[[[ 0 1 2 3]
[ 4 5 6 7]
[ 8 9 10 11]]
[[12 13 14 15]
[16 17 18 19]
[20 21 22 23]]]
중앙 생략
>>> print(np.arange(10000))
[ 0 1 2 ... 9997 9998 9999]
>>> print(np.arange(10000).reshape(100, 100))
[[ 0 1 2 ... 97 98 99]
[ 100 101 102 ... 197 198 199]
[ 200 201 202 ... 297 298 299]
...
[9700 9701 9702 ... 9797 9798 9799]
[9800 9801 9802 ... 9897 9898 9899]
[9900 9901 9902 ... 9997 9998 9999]]
생략 비활성화
>>> np.set_printoptions(threshold=sys.maxsize) # sys module should be imported
기본 연산
>>> a = np.array([20, 30, 40, 50])
>>> b = np.arange(4)
>>> b
array([0, 1, 2, 3])
>>> c = a - b
>>> c
array([20, 29, 38, 47])
>>> b**2
array([0, 1, 4, 9])
>>> 10 * np.sin(a)
array([ 9.12945251, -9.88031624, 7.4511316 , -2.62374854])
>>> a < 35
array([ True, True, False, False])
요소 곱하기, 행렬곱
>>> A = np.array([[1, 1],
[0, 1]])
>>> B = np.array([[2, 0],
[3, 4]])
>>> A * B # elementwise product
array([[2, 0],
[0, 4]])
>>> A @ B # matrix product
array([[5, 4],
[3, 4]])
>>> A.dot(B) # another matrix product
array([[5, 4],
[3, 4]])
연산 + 대입연산자
>>> rg = np.random.default_rng(1) # create instance of default random number generator
>>> a = np.ones((2, 3), dtype=int)
>>> b = rg.random((2, 3))
>>> a *= 3
>>> a
array([[3, 3, 3],
[3, 3, 3]])
>>> b += a
>>> b
array([[3.51182162, 3.9504637 , 3.14415961],
[3.94864945, 3.31183145, 3.42332645]])
>>> a += b # b is not automatically converted to integer type
Traceback (most recent call last):
...
numpy.core._exceptions._UFuncOutputCastingError: Cannot cast ufunc 'add' output from dtype('float64') to dtype('int64') with casting rule 'same_kind'
배열내 계산(sum , max, min)
>>> a = rg.random((2, 3))
>>> a
array([[0.82770259, 0.40919914, 0.54959369],
[0.02755911, 0.75351311, 0.53814331]])
>>> a.sum()
3.1057109529998157
>>> a.min()
0.027559113243068367
>>> a.max()
0.8277025938204418
axis = 0 (열), axis = 1(행)
>>> b = np.arange(12).reshape(3, 4)
>>> b
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]])
>>> b.sum(axis=0) # sum of each column
array([12, 15, 18, 21])
>>> b.min(axis=1) # min of each row
array([0, 4, 8])
>>> b.cumsum(axis=1) # cumulative sum along each row (행 누적합)
array([[ 0, 1, 3, 6],
[ 4, 9, 15, 22],
[ 8, 17, 27, 38]])
범용 함수
>>> B = np.arange(3)
>>> B
array([0, 1, 2])
>>> np.exp(B)
array([1. , 2.71828183, 7.3890561 ])
>>> np.sqrt(B)
array([0. , 1. , 1.41421356])
>>> C = np.array([2., -1., 4.])
>>> np.add(B, C)
array([2., 0., 6.])
인덱싱, 슬라이싱 및 반복
>>> a = np.arange(10)**3
>>> a
array([ 0, 1, 8, 27, 64, 125, 216, 343, 512, 729])
>>> a[2]
8
>>> a[2:5]
array([ 8, 27, 64])
>>> # equivalent to a[0:6:2] = 1000;
>>> # from start to position 6, exclusive, set every 2nd element to 1000
>>> a[:6:2] = 1000
>>> a
array([1000, 1, 1000, 27, 1000, 125, 216, 343, 512, 729])
>>> a[::-1] # reversed a
array([ 729, 512, 343, 216, 125, 1000, 27, 1000, 1, 1000])
>>> for i in a:
print(i**(1 / 3.))
9.999999999999998 # may vary
1.0
9.999999999999998
3.0
9.999999999999998
4.999999999999999
5.999999999999999
6.999999999999999
7.999999999999999
8.999999999999998
다차원 배열 인덱싱
>>> def f(x, y):
return 10 * x + y
>>> b = np.fromfunction(f, (5, 4), dtype=int)
>>> b
array([[ 0, 1, 2, 3],
[10, 11, 12, 13],
[20, 21, 22, 23],
[30, 31, 32, 33],
[40, 41, 42, 43]])
>>> b[2, 3]
23
>>> b[0:5, 1] # each row in the second column of b
array([ 1, 11, 21, 31, 41])
>>> b[:, 1] # equivalent to the previous example
array([ 1, 11, 21, 31, 41])
>>> b[1:3, :] # each column in the second and third row of b
array([[10, 11, 12, 13],
[20, 21, 22, 23]])
>>> c = np.array([[[ 0, 1, 2], # a 3D array (two stacked 2D arrays)
[ 10, 12, 13]],
[[100, 101, 102],
[110, 112, 113]]])
>>> c.shape
(2, 2, 3)
>>> c[1, ...] # same as c[1, :, :] or c[1]
array([[100, 101, 102],
[110, 112, 113]])
>>> c[..., 2] # same as c[:, :, 2]
array([[ 2, 13],
[102, 113]])
다차원 배열 반복
>>> for row in b:
print(row)
[0 1 2 3]
[10 11 12 13]
[20 21 22 23]
[30 31 32 33]
[40 41 42 43]
>>> for element in b.flat:
print(element)
0
1
2
3
10
11
12
13
20
21
22
23
30
31
32
33
40
41
42
4
'Python > Library' 카테고리의 다른 글
[Library] NumPy - 1 (0) | 2023.09.05 |
---|